Spectroscopic determination of the magnetic-field distribution in an imploding plasma

نویسنده

  • G. Davara
چکیده

Articles you may be interested in Beyond Zeeman spectroscopy: Magnetic-field diagnostics with Stark-dominated line shapes The time-dependent radial distribution of the magnetic field in a high density z-pinch plasma has been determined by observation of the contribution of the Zeeman effect to the spectral profiles of ionic emission lines. The dominance of the line profiles by the Stark broadening required high-accuracy profile measurements and the use of polarization spectroscopy. The plasma implodes in Ӎ600 ns, and the field distribution was measured up to 90 ns before stagnation on axis. During the implosion the plasma was found to conduct the entire circuit current. By comparing the data to the solution of the magnetic diffusion equation the electrical conductivity of the plasma was determined, found to be in agreement with the Spitzer value. These measurements, together with our previously measured ion velocity distributions, allowed for the determination of the time-dependent relative contributions of the magnetic and thermal pressure to the ion radial acceleration across the plasma shell.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Use of emission-line intensities for a self-consistent determination of the particle densities in a transient plasma.

A method for a self-consistent determination of the time history of the electron density, electron temperature, and ionic charge-state composition in a multicomponent plasma, using time-dependent measurements and calculations of absolute emission-line intensities, is presented. The method is applied for studying the properties of an imploding gas-puff Z-pinch plasma that contains several oxygen...

متن کامل

Pressure and energy balance of stagnating plasmas in z-pinch experiments: implications to current flow at stagnation.

Detailed spectroscopic diagnostics of the stagnating plasma in two disparate z pinches allow, for the first time, the examination of the plasma properties within a 1D shock wave picture, demonstrating a good agreement with this picture. The conclusion is that for a wide range of imploding-plasma masses and current amplitudes, in experiments optimizing non-Planckian hard radiation yields, contra...

متن کامل

Initial magnetic field compression studies using gas-puff Z-pinches and thin liners on COBRA

This magnetic compression of cylindrical liners filled with DT gas has promise as an efficient way to achieve fusion burn using pulsed-power machines. However, to avoid rapid cooling of the fuel by transfer of heat to the liner an axial magnetic field is required. This field has to be compressed during the implosion since the thermal insulation is more demanding as the compressed DT plasma beco...

متن کامل

Modeling Magnetic Field in Heavy ion Collisions Using Two Different Nuclear Charge Density Distributions

By studying the properties of matter during heavy-ion collisions, a better understanding of the Quark-Gluon plasma is possible. One of the main areas of this study is the calculation of the magnetic field, particularly how the values of conductivity affects this field and how the field strength changes with proper time. In matching the theoretical calculations with results obtained in lab, two diffe...

متن کامل

Electron density and ionization dynamics in an imploding z-pinch plasma

The time-dependent radial distributions of the electron and ion densities during the implosion phase of a gas-puff z-pinch plasma are determined from measurements of continuum radiation, as well as time-dependent collisional-radiative analysis of the observed particle ionization history in the plasma. It is shown that during the 140-ns-long time interval close to the end of the 620-ns-long impl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014